141 research outputs found

    Free-space subcarrier wave quantum communication

    Get PDF
    We experimentally demonstrate quantum communication in 10 dB loss outdoor atmospheric channel with 5 kbit/s bitrate using subcarrier wave coding method. Free-space link was organized by telescoping system with symmetric fiber-optic collimators

    Simulation study of Non-ergodicity Transitions: Gelation in Colloidal Systems with Short Range Attractions

    Full text link
    Computer simulations were used to study the gel transition occurring in colloidal systems with short range attractions. A colloid-polymer mixture was modelled and the results were compared with mode coupling theory expectations and with the results for other systems (hard spheres and Lennard Jones). The self-intermediate scattering function and the mean squared displacement were used as the main dynamical quantities. Two different colloid packing fractions have been studied. For the lower packing fraction, α\alpha-scaling holds and the wave-vector analysis of the correlation function shows that gelation is a regular non-ergodicity transition within MCT. The leading mechanism for this novel non-ergodicity transition is identified as bond formation caused by the short range attraction. The time scale and diffusion coefficient also show qualitatively the expected behaviour, although different exponents are found for the power-law divergences of these two quantities. The non-Gaussian parameter was also studied and very large correction to Gaussian behaviour found. The system with higher colloid packing fraction shows indications of a nearby high-order singularity, causing α\alpha-scaling to fail, but the general expectations for non-ergodicity transitions still hold.Comment: 13 pages, 15 figure

    Conformational and Structural Relaxations of Poly(ethylene oxide) and Poly(propylene oxide) Melts: Molecular Dynamics Study of Spatial Heterogeneity, Cooperativity, and Correlated Forward-Backward Motion

    Full text link
    Performing molecular dynamics simulations for all-atom models, we characterize the conformational and structural relaxations of poly(ethylene oxide) and poly(propylene oxide) melts. The temperature dependence of these relaxation processes deviates from an Arrhenius law for both polymers. We demonstrate that mode-coupling theory captures some aspects of the glassy slowdown, but it does not enable a complete explanation of the dynamical behavior. When the temperature is decreased, spatially heterogeneous and cooperative translational dynamics are found to become more important for the structural relaxation. Moreover, the transitions between the conformational states cease to obey Poisson statistics. In particular, we show that, at sufficiently low temperatures, correlated forward-backward motion is an important aspect of the conformational relaxation, leading to strongly nonexponential distributions for the waiting times of the dihedrals in the various conformational statesComment: 13 pages, 13 figure

    The mean-squared displacement of a molecule moving in a glassy system

    Full text link
    The mean-squared displacement (MSD) of a hard sphere and of a dumbbell molecule consisting of two fused hard spheres immersed in a dense hard-sphere system is calculated within the mode-coupling theory for ideal liquid-glass transitions. It is proven that the velocity correlator, which is the second time derivative of the MSD, is the negative of a completely monotone function for times within the structural-relaxation regime. The MSD is found to exhibit a large time interval for structural relaxation prior to the onset of the α\alpha-process which cannot be described by the asymptotic formulas for the mode-coupling-theory-bifurcation dynamics. The α\alpha-process for molecules with a large elongation is shown to exhibit an anomalously wide cross-over interval between the end of the von-Schweidler decay and the beginning of normal diffusion. The diffusivity of the molecule is predicted to vary non-monotonically as function of its elongation.Comment: 18 pages, 12 figures, Phys. Rev. E, in prin

    Computer Simulations of Supercooled Liquids and Glasses

    Full text link
    After a brief introduction to the dynamics of supercooled liquids, we discuss some of the advantages and drawbacks of computer simulations of such systems. Subsequently we present the results of computer simulations in which the dynamics of a fragile glass former, a binary Lennard-Jones system, is compared to the one of a strong glass former, SiO_2. This comparison gives evidence that the reason for the different temperature dependence of these two types of glass formers lies in the transport mechanism for the particles in the vicinity of T_c, the critical temperature of mode-coupling theory. Whereas the one of the fragile glass former is described very well by the ideal version of mode-coupling theory, the one for the strong glass former is dominated by activated processes. In the last part of the article we review some simulations of glass formers in which the dynamics below the glass transition temperature was investigated. We show that such simulations might help to establish a connection between systems with self generated disorder (e.g. structural glasses) and quenched disorder (e.g. spin glasses).Comment: 37 pages of Latex, 11 figures, to appear as a Topical Review article in J. Phys.: Condens. Matte

    Inherent Structure Entropy of Supercooled Liquids

    Full text link
    We present a quantitative description of the thermodynamics in a supercooled binary Lennard Jones liquid via the evaluation of the degeneracy of the inherent structures, i.e. of the number of potential energy basins in configuration space. We find that for supercooled states, the contribution of the inherent structures to the free energy of the liquid almost completely decouples from the vibrational contribution. An important byproduct of the presented analysis is the determination of the Kauzmann temperature for the studied system. The resulting quantitative picture of the thermodynamics of the inherent structures offers new suggestions for the description of equilibrium and out-of-equilibrium slow-dynamics in liquids below the Mode-Coupling temperature.Comment: 11 pages of Latex, 3 figure

    Equilibration times in numerical simulation of structural glasses: Comparing parallel tempering and conventional molecular dynamics

    Full text link
    Generation of equilibrium configurations is the major obstacle for numerical investigation of the slow dynamics in supercooled liquid states. The parallel tempering (PT) technique, originally proposed for the numerical equilibration of discrete spin-glass model configurations, has recently been applied in the study of supercooled structural glasses. We present an investigation of the ability of parallel tempering to properly sample the liquid configuration space at different temperatures, by mapping the PT dynamics into the dynamics of the closest local potential energy minima (inherent structures). Comparing the PT equilibration process with the standard molecular dynamics equilibration process we find that the PT does not increase the speed of equilibration of the (slow) configurational degrees of freedom.Comment: 5 pages, 3 figure

    The evolution of vibrational excitations in glassy systems

    Full text link
    The equations of the mode-coupling theory (MCT) for ideal liquid-glass transitions are used for a discussion of the evolution of the density-fluctuation spectra of glass-forming systems for frequencies within the dynamical window between the band of high-frequency motion and the band of low-frequency-structural-relaxation processes. It is shown that the strong interaction between density fluctuations with microscopic wave length and the arrested glass structure causes an anomalous-oscillation peak, which exhibits the properties of the so-called boson peak. It produces an elastic modulus which governs the hybridization of density fluctuations of mesoscopic wave length with the boson-peak oscillations. This leads to the existence of high-frequency sound with properties as found by X-ray-scattering spectroscopy of glasses and glassy liquids. The results of the theory are demonstrated for a model of the hard-sphere system. It is also derived that certain schematic MCT models, whose spectra for the stiff-glass states can be expressed by elementary formulas, provide reasonable approximations for the solutions of the general MCT equations.Comment: 50 pages, 17 postscript files including 18 figures, to be published in Phys. Rev.
    • …
    corecore